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ABSTRACT: The impact of dietary patterns and the
commensal microbiome on susceptibility to and severity of
infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus has been largely ignored to date. In this
Perspective, we present a rationale for an urgent need to
investigate this possible impact and therapeutic options for
COVID-19 based on dietary and microbiome modifications.
The mitigating role of nanotechnology with relation to the
impact of SARS-CoV-2 virus is highlighted.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a novel coronavirus that causes coronavirus
disease 2019 (COVID-19). Since its first detection in

December 2019, it has affected millions of people worldwide,
carrying a mortality rate much higher than any common flu.
While there is an urgent need for its effective treatment based
on antivirals and vaccines, it is imperative to explore any other
effective intervention strategies that may reduce the mortality
and morbidity rates of this disease.
It may be possible to look in the gut for a solution to or

mitigation of SARS-CoV-2 infection. The ecosystem of the gut
and commensal microbiota can both regulate and be regulated
by invading viruses, facilitating either stimulatory or
suppressive effects.1 Therefore, it is plausible to consider
whether the gut and SARS-CoV-2 interaction may play
significant roles in the intensity of the infection and its clinical
outcomes.

The integrity of the gut microbiome (the collective genomes
of the diverse microbiota that reside in the gastrointestinal
tracts of humans) could conceivably be disturbed by SARS-
CoV-2, causing gut dysbiosis in the host (Figure 1), as with
other infectious diseases. There are signs that may connect gut
functionality and microbiome responses to SARS-CoV-2. For
instance, the incubation period for SARS-CoV-2 is typically 5−

6 days, whereas the average incubation period for influenza is 2
days,2 and diarrhea can be a presenting feature in SARS-CoV-2
patients.3 New research indicates that SARS-CoV-2 may be
spread by fecal−oral transmission.4 The highest SARS-CoV-2
mortality and morbidity is in the elderly and in those with
underlying health problems that are associated with inflam-
mation and other disorders, such as diabetes.5 Interestingly,
these cohorts tend to have less diverse gut microbiomes.6

Links between the gut microbiome and age-related health
decline have been consistently shown.7 Aging is associated
with significant shifts in microbiome diversity and pro-
inflammatory states. The elderly microbiome generally shows
a shift away from Firmicutes, which dominates in younger
adults, toward genera such as Alistipes and Parabacteroides.8 A
strong interindividual variability has been characterized in the
elderly gut microbiome, with fluctuations featuring Faecali-
bacterium and Ruminococcus as well as certain Clostridium
clusters, especially IV and XIVa. These may explain, in part, the
different impacts of viral infections in elderly individuals.
There are also specific trends in microbiome shifts that are

seen in asthmatic and diabetic patients. Interestingly, asthma
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appears to be underrepresented among comorbidities for
critically ill patients infected with SARS-CoV-2.9 In severe
asthma, asthma control and sputum neutrophilia are associated
with Proteobacteria phylum relevant to pathogens such as
Escherichia, Salmonella, Vibrio, and Helicobacter.10 Additionally,
in chronic obstructive airways disease, the phylum Bacteroidetes
(e.g., Prevotella) is decreased.10 In contrast, the numbers of the
H2-producing Prevotellaceae (e.g., Prevotella) were highly
enriched in obese individuals prone to type II diabetes.11

Additionally, an abundance of Bif idobacteria (which can
produce butyrate) in type II diabetes patients has been
shown to improve glucose tolerance.12 In relation to this issue,
attention should be given to interesting, but limited, reports
regarding the abundance of Prevotella in sequencing data sets
of COVID-19 patients.13−15

An essential step for understanding the effect of the gut on
SARS-CoV-2 is identifying the main gut microbiome species
interacting with this virus. In this regard, the possibility that
SARS-CoV-2 can interact with one or many of the 1500
species of microbiota in the gut makes the matter complicated.
As such, without any human trials, it is impossible to refer to
any specific species that influences SARS-CoV-2 pathogenesis.
However, it is possible to consider the hypothesis of SARS-

CoV-2 gut interaction based on past evidence. Many different
direct or indirect microbiome pathways could contribute to
SARS-CoV-2-gut interactions. Considering the pulmonary
inflammation seen in SARS-CoV-2 patients in the second
week of infection, both direct or indirect pathways can be
taken into consideration. Direct suppression or promotion of
viral infection by the microbiome can occur via various
mechanisms, such as genetic recombination, alteration of
virion stability, driving the proliferation of cells, simulating
attachment to permissive cells, and contributing to viral
replication suppression; promotion of viral infection may occur
by inducing systems’ immunoregulatory and perturbing local
immune responses.1

Although reports on direct and indirect viral bacterial
promotion for influenza viruses are rare, examples of observed
suppression are manifold. Lactobacillus species, as a result of
carbohydrate fermentation, can produce lactic acid, and the
consequent pH changes inactivate different viruses.1 The
integrity of epithelial cells in the gut is important, as they
produce antiviral compounds that are hostile to viruses. The
colonic epithelial cells’ functionality relies largely on the
luminal presence of butyrate as an energy source, and the main
butyrate-producing bacteria in the gut belongs to the phylum
Firmicutes.
One hypothesis regarding microbiome interactions with

SARS-CoV-2 is relevant to the microbiomes’ impacts on
cytokines. Cytokines are small proteins that coordinate the
body’s response against infection and inflammation. For
example, type II interferon (interferon-γ) classically play
important roles in antiviral responses.16 More importantly,
microbial metabolic processes in the gut strongly impact the
production of cytokines. Microbiota can increase chronic phase
proteins and interferon signaling in lung cells to protect against
influenza infection. However, as in the case of SARS-CoV-2,
the body’s response to infection can go into overdrive. In some
patients, the immune response against SARS-CoV-2 results in
excessive levels of cytokines release, leading to hyper-
inflammation and, clinically, to severe acute respiratory distress
syndrome (SARDS) and multi-organ failure. So far, a cytokine
profile associated with SARS-CoV-2 disease severity has been
characterized by increased interferon-γ inducible protein 10 as
well as many other cytokines.2 Therefore, the elucidation of
host cytokine molecular pathways and microbiota compo-
nents17 as well as bacterial reactions in association with
cytokine responses may provide novel microbiome-based
therapeutic approaches to SARS-CoV-2 infection.
As of yet, no study has been reported to identify the

microbiota species that interact with SARS-CoV-2. Consider-
ing the presented discussion, nutritional and dietary strategies
directed at restoring the well-known beneficial microbiota,
which can possibly suppress viral infection in the elderly and
those with underlying health problems, may be an effective
strategy to mitigate the harmful effects of this virus.
One approach, as a whole and to be undertaken prior to any

viral infection, could include strengthening the intestinal
barrier against pathogens, increasing intestinal motility, and
reducing an underlying pro-inflammatory state by adopting a

Figure 1. Homeostasis versus possible mechanisms of dysbiosis by
SAR-CoV-2 virus infection.

Many different direct or indirect mi-
crobiome pathways could contribute to
SARS-CoV-2-gut interactions.
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more varied diet with a moderate increase in high-fiber and
plant-based foods. Of particular relevance is the enhancement
of intestinal butyrate production through the promotion of
microbial interactions by dietary changes. This change
enhances gut epithelial cell health. In this regard, the shifts
around the core microbiome including Bif idobacteria,
Lactobacilli, and Prevotella are critical. Universally, Bif idobac-
teria and Lactobacilli are considered beneficial species
regarding butyrate production, while the description of the
functionality of Prevotella remains controversial (Figure 1).
Importantly, Prevotella has been abundantly seen in the

clinical samples of SARS-CoV-2 infected patients,11−13 and the
interpretation of its role is challenging and unclear. It is still not
known whether Prevoltella becomes abundant as a conse-
quence of viral modulation or, conversely, is modulating SARS-
CoV-2. It is unclear if this abundance of Prevotella is due to
long-standing dietary patterns or originates from modulation of
the microbiome after the invasion of the virus. Depending on
whether Prevotella’s presence should be amplified or sup-
pressed, the appropriate therapeutic action could be chosen.
Past studies suggest that high-fat diets increase the abundance
of Prevotella, whereas plant-based diets and fermented foods
result in the opposite.18

As general advice, frequent snacking between meals may
cause dysbiosis and so should be kept to a minimum and only
constitute fruit and vegetables, if required. The impact of
probiotics should also be investigated. Probiotics may help by
interacting with the intestinal microbiota and modulating the
immune system directly or through modification of the gut
microbiota. The most commonly regarded beneficial probiotics
in foods are Bif idobacteria and Lactobacilli species. In this
regard, while still not having any full knowledge about
beneficial or harmful strains, diets adhering to modest qualities
of naturally fermented food are likely to be effective as
preventative measures against SARS-CoV-2 and are of no risk
for damaging the integrity of the gut and dysbiosis (Figure 1).
Without having knowledge about the best acting microbiota
strains in response to SARS-CoV-2, following a healthy,
moderate calorie, moderately higher fiber, and more diverse
diet is a logical approach to mitigate the severity of this viral
infection as a plausible preventive action. An essential
investigation into the microbiome of COVID-19 patients will
be able to reveal the association of this disease to clinical
outcomes of such preventative strategies.

VISION FOR FUTURE RESEARCH APPROACHES
Associations between dietary and microbiome effects and
susceptibility to infection and severity of illness should be
investigated with different methodologies. The overarching
strategy should involve large, adequately powered international
studies that recruit COVID-19 patients and controls to collect

clinical data, detailed dietary assessments, host genetics,
immune phenotyping, and multi-site multiomic microbiome
markers. The international approach would enable the
inclusion of populations from different regions with different
backgrounds, various dietary patterns, and environmental
exposures. This comprehensive and collaborative approach is
essential for unravelling the determinants of clinical outcomes
of this infection and for designing targeted therapeutic and
preventative measures. The moderating effects of high fiber
(especially the choice of the high-fiber food type), freshly
fermented, and diverse foods should also be examined as
preventative and mitigating measures.

NANOTECHNOLOGY-ENABLED ACTIONS
In the light of the presented discussion, nanotechnology may
play a critical role for rapid diagnosis, monitoring, and the
design of effective therapeutic actions for COVID-19 with
relevance to the gut modulation by SAR-CoV-2. Non-invasive
breath tests, with arrays of nanomaterials, can identify the
presence of volatile organic compounds with the signatures of
modulated microbiota (abundance of Prevotella, for example)
and, hence, recognize the presence of SAR-CoV-2 for quick
diagnosis and monitoring.19,20 Ingestible sensors can be
designed for the detection of inflammatory proteins associated
with COVID-19.21 If the therapeutic strategy relies on the
elimination of a specific bacterial strain in the gut, broad
spectrum antibiotics would not work, as they also eliminate
beneficial bacteria and consequently weaken the gut barrier.
Nanotechnology can efficiently be implemented in designing
intelligent drugs or functional foods, with the possibility of
localized delivery in the gut,22 and also in designing intelligent
functional foods.23 These drugs and foods should target
problematic bacterial strains in the gastrointestinal tract and
enhance its health by improving gut barriers against pathogens
and inflammatory reagents and by providing the base for
creating disruptive remedies based on microbiome engineer-
ing.19 Nanoscale-enabled tools will likely enable us to observe,
to navigate, and to act through the complicated ecosystem of
the gut to help in finding either a cure or mitigating procedures
for COVID-19 and keeping SAR-CoV-2 under control.
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